SECTIONAL SHIFTS AND CYCLICAL FLUCTUATIONS

Richard R. Freeman

References

Title: \textit{Sectional Shocks and Cyclical Fluctuations}

Author: Richard R. Freeman

Department: Economics

Institution: University of Chicago

Volume: 6

Issue: 2

Pages: 456-468 (October 1974)

Abstract:

This paper analyzes the impact of sectional shocks on the economy, focusing on the role of industry-specific variables in explaining cyclical fluctuations. The model incorporates the idea that different sectors of the economy can experience distinct shocks, leading to variations in output, employment, and prices. The analysis highlights the importance of considering sector-specific factors in understanding economic fluctuations.

Keywords: sectional shocks, cyclical fluctuations, economic models

Reference List:

Notes:

1. This work builds on earlier research by other economists, who have explored the role of sector-specific shocks in economic cycles.

2. The model incorporates a dynamic framework that allows for the examination of the long-run effects of sectional shocks on the economy.

3. The empirical results support the theoretical predictions, showing that sector-specific shocks can have significant impacts on economic performance.

4. The paper also discusses the policy implications of these findings, highlighting the need for targeted interventions to mitigate the effects of sectional shocks on specific industries.
amount of reallocation that occurs over time. Sectoral reallocation is large in some periods because there are shocks which have a large impact on the desired allocation of labor across sectors in those periods.

This paper presents a similar but different view of the relationship between sectoral shifts and cyclical fluctuations. This relationship is studied in a two sector version of a real business cycle model. In a sense to be made precise in the analysis, a model is presented where all cyclical fluctuations are the result of aggregate shocks and sectoral reallocation is the result of constant differences in productivity growth across sectors. Nonetheless, this model predicts a correlation between sectoral reallocation and the cycle, with the sign of the correlation depending upon the relative cyclical sensitivities of the two sectors. Empirically, the model predicts that the shift out of industry should be heavier during downturns whereas the shift out of agriculture should be heavier during upturns. The intuition for this result is straightforward. If cycles are not neutral across sectors then relative productivities vary over the cycle and hence interact with the optimal timing of reallocation. If a downturn makes sector 1 worse off relative to sector 2 then this will encourage workers in sector 1 to move into sector 2 sooner than they might have in the absence of a downturn. Conversely, if an upturn makes sector 1 improve relative to sector 2 then a worker may postpone their decision to move into sector 2 relative to what it would have been in the absence of an upturn.

Having demonstrated this possibility theoretically the paper then uses data from thirteen countries to examine the relationship between sectoral change and the cycle.

In almost all countries the evidence is in accord with the prediction of the model: the movement out of industry is concentrated during downturns and the movement out of agriculture is concentrated during upturns. The difference between agriculture and industry is of some significance via a variable aggregate hypothesis. Davis (1987) has argued that if reallocation is more costly during periods when productivity is high then this factor will tend to cause reallocation to be concentrated during downturns.

2. Model

There is a continuum of identical infinitely lived agents, uniformly distributed along the interval [0, 1]. Production takes place in two sectors, but the two outputs are perfect substitutes in consumption. In any period each worker must be in only one of the two sectors. Within both sectors it is assumed that production has the following structure. Each period can be broken down into a large number of identical subperiods. In each subperiod an individual either works a specified amount of time or works none at all, but individuals are free to vary the number of subperiods in which they work. In this way, the labor supply choice for an individual in a given period can be thought of as choosing the fraction of the period in which labor is supplied. One may think of this as an economy in which the workweek (or workday) is fixed and individuals simply choose what fraction of weeks (or days) to work in a given year. With this in mind, each sector has a production function of the form:

\[g_i(n_{it}, f_{it}, \theta_i, d_{it}) \]

where \(i \) denotes sector, \(t \) indexes time, \(n \) denotes number of workers in the sector, \(f_{it} \) is the fraction of the period worked by each worker, \(\theta_i \) is an aggregate shock, and \(d_{it} \) is a sector specific productivity shift. In what follows the \(d_{it} \) will be determinist.
\[\frac{(g' \cdot \gamma) - \gamma + \gamma - \gamma = 1}{1} \]

Example 2:

\[f'(x) = g(x) \]

Solution:

\[f(x) = \int g(x) \, dx \]

Where \(f(x) \) is the antiderivative of \(g(x) \).

3.

\[(x^2 + 2x + 1) + c = 1 \]

Solution:

\[x^2 + 2x + c = 1 \]

Where \(c \) is the constant of integration.

4.

\[\frac{d}{dx} \left(\frac{1}{x^2} \right) + \frac{d}{dx} \left(\frac{1}{x} \right) = 1 \]

Solution:

\[-\frac{2}{x^3} - \frac{1}{x^2} = 1 \]

Where the derivatives are taken with respect to \(x \).

5.

\[\int (e^x + \cos x) \, dx = 1 \]

Solution:

\[e^x + \sin x + c = 1 \]

Where \(c \) is the constant of integration.

6.

\[\int \frac{1}{x^2 + 1} \, dx = \arctan(x) + c \]

Solution:

\[\arctan(x) + c = 1 \]

Where \(c \) is the constant of integration.

7.

\[\int \frac{1}{x^2 + 2} \, dx = \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}} \right) + c \]

Solution:

\[\frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}} \right) + c = 1 \]

Where \(c \) is the constant of integration.

8.

\[\int \frac{1}{x^2 - 1} \, dx = \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| + c \]

Solution:

\[\frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| + c = 1 \]

Where \(c \) is the constant of integration.
The premise of the argument in the case of Manuphaur is that the imposition of 1969's (sic) anti-trust law on the modern economy was a clear violation of the rights of those businesses that were subjected to its provisions. The law, aimed at preventing the formation of cartels and the monopolization of the market, was seen as an infringement of the free market principles that had been a cornerstone of the economy. The plaintiffs argued that the law deprived them of the right to engage in legitimate business activities and that it interfered with their ability to compete fairly in the market. The case, therefore, emerged as a significant test of the constitutional balance between the need for regulation and the principles of free enterprise.
TABLE 1

<table>
<thead>
<tr>
<th>Year</th>
<th>96/97</th>
<th>97/98</th>
<th>98/99</th>
<th>99/00</th>
<th>00/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Year</th>
<th>96/97</th>
<th>97/98</th>
<th>98/99</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3

Results for Agriculture

<table>
<thead>
<tr>
<th>County</th>
<th>Average Loss in Production</th>
<th>Average Loss in Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6'7</td>
<td>8'9</td>
</tr>
<tr>
<td>17</td>
<td>8'7</td>
<td>10'6</td>
</tr>
<tr>
<td>19</td>
<td>10'3</td>
<td>12'1</td>
</tr>
<tr>
<td>21</td>
<td>12'0</td>
<td>14'3</td>
</tr>
<tr>
<td>23</td>
<td>14'1</td>
<td>16'2</td>
</tr>
<tr>
<td>25</td>
<td>16'2</td>
<td>18'3</td>
</tr>
<tr>
<td>27</td>
<td>18'3</td>
<td>20'6</td>
</tr>
<tr>
<td>29</td>
<td>20'5</td>
<td>22'7</td>
</tr>
<tr>
<td>31</td>
<td>22'7</td>
<td>24'9</td>
</tr>
</tbody>
</table>

Conclusion

This paper has studied the relationship between sectoral fluctuations of workers in the context of a real business cycle model. Predictions were derived from the recognition and the identification of downturns in the economy. The predictions were based on the assumption that the economy is subject to a cyclical nature, with periods of expansion and contraction. The model was calibrated using historical data, and the results were compared to actual economic fluctuations. The predictions were found to be reasonably accurate, indicating that the model can be used to forecast future economic downturns and recoveries.
1. Introduction

Innovations framework theory applied to the real exchange rate, forming the basis of the
Persson et al. (1987). In the previous section, the authors noted that a
number of significant studies have been conducted on the real exchange rate, but the
results are often conflicting. The model of Persson et al. (1987) is a
model that links the real exchange rate to a
number of factors, including income, prices, and financial variables. This
model is based on the assumption that the real exchange rate
is determined by a number of factors, including income, prices, and financial variables.

Abstract

REVISTA ECONOMICO VOL. 6, N° 2

References

UNE ENFOQUE DE CICLO DE NEGOCIOS REALES
DE CAMBIO REAL EN CHILE: LAS REGULADORES EMPÍRICOS DEL TPO

Jorge A. Quiroz

Programa Posgrado en Economía

Ladee/Programación简易

Programa Posgrado en Economía

Jorge A. Quiroz