Estimación de PDFF usando una red neuronal con múltiples decodificadores para la separación de agua-grasa con un número reducido de ecos

dc.contributor.authorMeneses, Juan Pabloes_CL
dc.contributor.authorArrieta, Cristobales_CL
dc.contributor.authorMaggiora, Gabriel dellaes_CL
dc.contributor.authorBesa, Ceciliaes_CL
dc.contributor.authorUrbina, Jesúses_CL
dc.contributor.authorArrese, Marcoes_CL
dc.contributor.authorGana, Juan Cristóbales_CL
dc.contributor.authorGalgani, Jose E.es_CL
dc.contributor.authorTejos, Cristianes_CL
dc.contributor.authorUribe, Sergioes_CL
dc.date.accessioned2025-04-01T00:21:16Z
dc.date.available2025-04-01T00:21:16Z
dc.date.issued2023es_CL
dc.descriptionIndexado en: Web of Sciencees_CL
dc.descriptionORCID de Autor/a Meneses, Juan Pablo: 0000-0003-3313-5713es_CL
dc.descriptionArrieta, Cristobal: 0000-0001-8773-3722es_CL
dc.descriptionMaggiora, Gabriel della: 0000-0002-6320-5105es_CL
dc.descriptionBesa, Cecilia: 0000-0002-0015-0434es_CL
dc.descriptionUrbina, Jesús: 0000-0002-4943-0613es_CL
dc.descriptionArrese, Marco: 0000-0002-0499-4191es_CL
dc.descriptionGana, Juan Cristóbal: 0000-0002-0400-2164es_CL
dc.descriptionGalgani, Jose E.: 0000-0001-9793-8561es_CL
dc.descriptionTejos, Cristian: 0000-0002-8367-155Xes_CL
dc.descriptionUribe, Sergio: N/Des_CL
dc.description.abstractObjective To accurately estimate liver PDFF from chemical shift-encoded (CSE) MRI using a deep learning (DL)-based MultiDecoder Water-Fat separation Network (MDWF-Net), that operates over complex-valued CSE-MR images with only 3 echoes. Methods The proposed MDWF-Net and a U-Net model were independently trained using the frst 3 echoes of MRI data from 134 subjects, acquired with conventional 6-echoes abdomen protocol at 1.5 T. Resulting models were then evaluated using unseen CSE-MR images obtained from 14 subjects that were acquired with a 3-echoes CSE-MR pulse sequence with a shorter duration compared to the standard protocol. Resulting PDFF maps were qualitatively assessed by two radiologists, and quantitatively assessed at two corresponding liver ROIs, using Bland Altman and regression analysis for mean values, and ANOVA testing for standard deviation (STD) (signifcance level: .05). A 6-echo graph cut was considered ground truth. Results Assessment of radiologists demonstrated that, unlike U-Net, MDWF-Net had a similar quality to the ground truth, despite it considered half of the information. Regarding PDFF mean values at ROIs, MDWF-Net showed a better agreement with ground truth (regression slope=0.94, R2=0.97) than U-Net (regression slope=0.86, R2=0.93). Moreover, ANOVA post hoc analysis of STDs showed a statistical diference between graph cuts and U-Net (p<.05), unlike MDWF-Net (p=.53). Conclusion MDWF-Net showed a liver PDFF accuracy comparable to the reference graph cut method, using only 3 echoes and thus allowing a reduction in the acquisition times. Clinical relevance statement We have prospectively validated that the use of a multi-decoder convolutional neural network to estimate liver proton density fat fraction allows a signifcant reduction in MR scan time by reducing the number of echoes required by 50%. Key Points • Novel water-fat separation neural network allows for liver PDFF estimation by using multi-echo MR images with a reduced number of echoes. • Prospective single-center validation demonstrated that echo reduction leads to a signifcant shortening of the scan time, compared to standard 6-echo acquisition. • Qualitative and quantitative performance of the proposed method showed no signifcant diferences in PDFF estimation with respect to the reference technique.es_CL
dc.identifier.doi10.1007/s00330-023-09576-2es_CL
dc.identifier.issn1432-1084es_CL
dc.identifier.urihttps://repositorio-dev.uahurtado.cl/handle/11242/27757
dc.language.isoeses_CL
dc.publisherUniversitat de Barcelona. Observatori de Bioètica i Dret.es_CL
dc.relation.urihttps://link.springer.com/article/10.1007/s00330-023-09576-2es_CL
dc.rightsAcceso abiertoes_CL
dc.rights.licenseBY 4.0
dc.sourceEuropean Radiology; Vol.33 (2023): pp.6557-6568es_CL
dc.subjectLiveres_CL
dc.subjectNon-alcoholic fatty Liver diseasees_CL
dc.subjectBiomarkerses_CL
dc.subjectDeep leaninges_CL
dc.subjectMagnetic resonance imaginges_CL
dc.titleEstimación de PDFF usando una red neuronal con múltiples decodificadores para la separación de agua-grasa con un número reducido de ecoses_CL
dc.title.alternativeLiver PDFF estimation using a multi-decoder water-fat separation neural network with a reduced number of echoeses_CL
dc.typeArtículoes_CL

Files

Collections